
ENGN/PHYS 207 (November 30, 2022)
SOLUTION: Frequency Sensitive Circuits: Phasor Math, Impedance, and RC filters

1 Wave In, Wave Out

1. List the 3 parameters that define a (co)sine wave? If you need a bigger hint, take a look at
the equations below:

1. amplitude (r), 2. frequency (ω = 2πf), 3. phase (φ)

2. Next question: Which of these 3 parameters differ between the input and output waves?
Which of these parameter(s) are the same?

Frequency of input and output is the SAME! The other 2 can be different. Hopefully, you
this gibes with intuition based on building and measuring in lab!

2 Math Stuff: What the heck is a phasor and what does it have
to do with impedance and transfer functions?!

1. Write an expression for the length of the adjacent and opposite triangle sides, a and b in
terms of r and φ.

a = r cosφ

b = r sinφ

It really is basic trig. See, complex numbers aren’t that bad :)

2. Next, flip the problem on its head: Write an expression for r and φ in terms of a and b.

r =
√
a2 + b2

φ = tan−1(b/a)

Still just basic trig, fun and easy, no?

3. Notice the z = a + jb form that naturally occurs in circuits land. For example what is the
equivalent impedance of a resistor R and capacitor C in series? (This is the backbone of
the RC filters we studied and played with in lab!). Plot this point on the complex plane for
R = 1.5kΩ, C = 68 nF, and ω = 104 rad/s.

Z̃s = Z̃R + Z̃C = R+
1

jωC
= R− j

ωC

Last step just multiplies top and bottom by j. Notice the imaginary part is frequency depen-
dent! That’s the whole concept of impedance.

1

ωC
=

1

68× 10−5 Frad/s
≈ 1470 Ω

Note the unit is Ohms. You can convince yourself of this by working through units.
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Anyway, to draw this we would go over 1.5kΩ on the real axis, then down the imaginary axis
about the same amount (because it’s minus j). This point sits almost due SE in the complex
plane. and each side of the triangle is about 1.5kΩ.

4. Next, write this series impedance Z̃s in complex exponential form—basically solve for r and
φ. Then draw it on the complex plane. Does it point to the same spot on the complex plane
that you marked in the previous step? Spoiler alert: it should!

r =

√
R2 +

(
1

ωC

)2

≈ 2100 Ω

(Note the j does NOT appear in the above calculation). It never should. The j only denotes
which part is the imaginary part. Everything that hits the j is the actual magnitude along
the imaginary axis.

5. How would your answers above change if we set the angular frequency to ω = 100 rad/s?
The imaginary part changes; the real part doesn’t. Let’s recompute. We know ω decreased
by a factor of 10, so that 1/ωC ≈ 147000 Ω increased by a factor of 10. (This means the
capactor’s impedance increased at a lower frequency; makes sense)

The imaginary part is now 100 times bigger, and now also about 100 times larger than the
real part R = 1500 Ω So the phasor points nearly along the negative imaginary axis and has
magnitude of ≈ 147000 (in units of kiloohms). It’s actually a little more and you could use
Pythagorean formula to formally compute. But you’ll find only a small contribution from the
real part.

3 A little deeper math dive into complex exponentials

1. z1 = 5 e−jπ/2

Can just read off magnitude of 5 and phase shift of −π/2. So this points 5 nits along the
negative imaginary axis (due South).

2. z2 = 1 + 1j

Read this out loud, it says “over 1 on the real axis, up one on the imaginary.” This points
due NE. Formally, phase angle is π/4 with a magnitude

√
2. We can also write this as

z2 =
√

2ejπ/4

3. z3 = 1
1+j

This one is a little trickier due to the division. You could use complex conjugates, but that’s
a pain . Intead just realize the denominator is the same as z2 above. Also note that 1 = 1ej0

as it just lies on the real axis. Then just divide numerator and denominator, super easy to
do using properties of exponentials. We quickly see z3 = 1√

2
ej(−π/4). This is a phasor that

points due SE and has a magnitude of 1/
√

2.

You may note that z1 above looks supiciously like 1/jωC with values plugged in; and z3 bears
quite the resemblence to the transfer function of a low pass filter. Hmmm, muy interesante!
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4 Transfer function: Low Pass Filter example

H̃lpf (ω) =
1

1 + jωRC
=

1

1 + jω/ωc
=

1

1 + jf/fc
(1)

Assume we have an LPF set for a cutoff frequency of fc ≈ 159 Hz or ωc = 1000 rad/s. Let’s say
you are at the lab bench testing your LPF to characterize its behavior. Currently you have the
frequency of the wave generator set to f =10 Hz and an amplitude of rin = 100 mV. Per convention,
we’ll assume the phase angle is given by φin = 0.

1. Firstly, before getting into computations, given the frequency of the input wave, as well as
the filter cutoff, would you expect this signal to pass or be significantly attenuated?

A frequency of 10 Hz is well within the passband of a LPF. So we’d expect the signal to pass:
the output wave amplitude should be nearly the same as the input. We also expect the phase
shift to be minimal.

2. Compute H̃lpf for this scenario and plot the result in the complex plane. It may be helpful
here to use the nice properties dividing complex exponentials. (See Eqn 1)

First compute the ratio f/fc = 10/159 ≈ 0.063. Then plug into: H̃lpf (ω) = 1
1+jf/fc

= 1
1+j0.063

The denominator is pretty obviously close to 1, which implies the transfer function is pretty
close to 1, which implies the input and output are nearly the same, as expected. But onward
we go with calculations. Let’s work the denominator. It’s magnitude is:

rD =
√

12 + (0.063)2 ≈ 1.002

Phase angle is
φD = tan−1(0.063)

This computes to be about 0.063 rad or about 3.6 degrees. Small phase shift!

Put it together we can write this in phasor form as: 1.002ej 0.063.

The numerator in phasor form is just 1ej0. Now divide numerator and denominator and we
get

H̃lpf (ω = 1000) =
1

1.002
ej(0−0.063) ≈ 0.998e−j 0.063

3. Plot the phasor representing the input wave. This has nearly unit length, just a smidge less.
It lies just below the real axis shifted about 3.6 degrees CW off the real axis.

4. Next compute the magnitude and phase of the output wave (using Eqn ??). Be careful to
note its magnitude and phase. It may be helpful here to use the nice properties of multiplying
complex exponentials to make this process relatively painless. Plot the resulting phasor Ṽout
on the same axis.

Ṽout = H̃lpf Ṽin = (0.998e−j 0.063)(100 ej0) = 99.8e−j 0.063

This means the amplitude of the output wave is 99.8 mV, nearly the same as the 100 mV
input (as expected!). The output is phase shifted just a few degrees. Note the negative phase
shift means it LAGS in time...the input hits a peak and then shortly after the output does.
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5. Using your results above, make a quick sketch of the input and output waves vs time, similar
to what is shown in Figure 1, Basically you are drawing the waves:

vin(t) = 100 cos(1000t)

vout(t) = 99.8 cos(1000t− 0.063)

Obviously, they will very nearly overlap. One important question: what is the period of this
wave. Remember T = 1/f . Be sure to indicate the proper time scale in your sketch.

6. Let’s interpret the result of all this math madness. How does your purely math result stack
up against your response for the first question in this section? Does it match your experience
in the lab?

Matches everything we’ve seen. The math don’t lie! That’s a new hit song title, by the way
(cf. Shakira)

7. Now repeat steps 1-6, but this time imagine you have increased the wave generator frequency
to f = 1590 Hz.

The main thing is the realize the ratio f/fc = 10. This makes the denominator of the transfer
function equal to 1+j10. It has a magnitude

√
101 ≈ 10. So the magnitude of the transfer function

is now about 1/10. This makes the output wave about 1/10 that of the input or about 10 mV.
Strong attenutation as expected. 1590 Hz is well into the cutoff region for a 159 Hz cutoff frequency
LPF. Note the angle of the transfer function is getting close to −π/2 (actually just − tan−110,
but close enough). So the output is going to be phase shifted nearly 90 degrees. This makes sense,
everytime we see wave getting cutoff, we note a phase shift that comes with it. Again, hopefully
the math convinces you that the math describes what the circuit is actually doing.

5 Phase Shift

1. Compute the phase angle of the numerator φN . Draw the phasor in the complex plane, if it
helps! (And don’t overthink this!)

We already did this in the previous section. It is φN = 0.

2. Do the same for the denominator. Again, draw the phasor and analyze a triangle to make
this really simple—it’s just basic trig, I promise. We basically already did this in the previous
section too. Denominator points 1 on the real axis, then goes up the imaginary axis an
amount f/fc = ω/ωc. So the phase angle

φD = tan−1(f/fc)

3. Now write an expression for the transfer function phase angle φH . This is the phase shift,
which is a function of frequency! Need a hint, just look up at the previous set of equations,
namely the bottom-most.

φH = φN − φD = 0− tan−1(f/fc) = tan−1(f/fc)
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4. Make a quick sketch the phase shift φH as a function of frequency. The phase shift plot starts
at 0, then snakes down like an inverse tangent does toward −π/2. It passes through −π/4 at
the cutoff frequency (where f = fc).

5. Gut check - does this make any sense? What is the phase shift for when the wave generator
is set to 10 Hz? 1590 Hz? How does this pure math result square with your experience in lab
(perhaps staring at picoscope displays for too many hours)? Yep - check.

6. For you to explore on your own.
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