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ENGN/PHYS 207 fall 2020 (September 9, 2020)
Frequency Sensitive Circuits: Phasor Math, Impedance, and RC filters

1 Math Stuff

P
Remember, there is a 3-way equivalence between 1) drawing a triangle; 2) writing a complex number
z = a + jb, and writing a complex exponential re/®. Be able to move between any one of these
three forms

Adding complex numbers is straight forward, just remember to add the real parts separately
from the imaginary parts

21+ 22 = (a1 + jb1) + (a2 + jb2) = (a1 + a2) + j(b1 + b2). (1)
Subtraction works similarly.

Exponentials are so nice to use because they have the following properties for multiplying and
dividing complex numbers:

2120 = (11679 (rpe?%?) = rirpel(¥1162) (2)

Note the amplitudes multiply; the angles add.
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Note the amplitudes divide; the angles subtract.

Euler’s ID is incredibly useful. We’ll often use it in this form:

red(Wi+d) _ .00 jwt (4)

where 7 is the magnitude, e’¢ expresses the phase angle drawn in the complex plane, and wt
expresses the time dependence (how fast the phasor rotates around the plane in time). Notice the
time dependence can be written separately from the magnitude and phase information.
This is the mathemagic behind phasors. Also note that the a unit length complex exponential e/®
simply encodes a rotation (phase angle) in the complex plane. When it multiplies another number,
it does NOT change the magnitude.

Complex exponentials are ultimately just a very convenient mathematical tool for expressing

sines and cosines. We need to know 3 things to define a wave: 1) amplitude; 2) phase; 3) (angular)
frequency. Using Euler’s ID we can write oscillating signals as follows

7 cos(wt + ¢) = Re[re!@He)] (5)



1.1 Some math problems to get (re-)acquainted with complex numbers

Sketch each of the following in the complex plane. It may be helpful to write in z = a + jb in
complex exponential form re/¢. Remember, r represents the magnitude and e’ represents

the phase angle (rotation) relative tq positive real axis!
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2 Capacitors

Capacitor action is based on the fact that capacitors store charge. For instance, equal and opposite
charges can be stored on two conductive plates separated by an air gap (dielectric material). It takes
energy to move charges around. This energy is related to the voltage of course. The fundamental
relation for a capacitor is:

qo(t) = Cuc(t) (6)

This relation says that voltage across the capacitor must be changing if the amount of charge
is changing. Here C is the capacitance. It accounts for geometrical factors, such as the area of the
conductors, the separation between them and the material properties of the dielectric. The larger
the capacitor, the less the voltage (electrical) energy it takes to store charge on them. Capacitance
is given in units of Farads [F].

Now let’s find out what the impedance of a capacitor is!

1. Starting with Eqn 6, take a time derivative of both sides to show obtain the current ic(t) as
a function of capacitance and voltage vc(t). Assume C is constant for now (actually many
modern devices exploit a changing capacitance such that dC/dt # 0, but ignore that here).

2. Assume the voltage across the capacitor is given as vo(t) = v, cos(wt). Using Eqn 6, develop
an expression for the inductor voltage ic(t).

3. Recall there are 3 attributes of any oscillating signal: magnitude, phase, and frequency. Which
1 of these is the same for both current and voltage in an capacitor? Which two are different?

4. Draw a phasor in the complex plane that represents the capactor current ic(t). We label this
Ic. What is the magnitude of this phasor? What is the phase of this phasor (relative to the
real axis)?

5. Then draw another phasor that represents the voltage vc(t). We label this Ve What are its
magnitude and phase?



6. Starting with the phasor I, what two math operations do you have to make in order to get
it to have the same magnitude and phase as V¢? Hint: Look back at part c.

7. Now the punchline: We want to write a sort of generalized Ohm’s Law for inductors:
Vo =IoZco

The term Z¢ is what we call the electrical impedance of a capacitor. Again, you can think
of this as a frequency dependent resistance. The impedance must therefore encode the math
operations for scaling the magnitude and rotating the phase of I to get to V. Therefore, show

that: .
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8. Say you have a 0.56 uF capacitor in hand. What is the magnitude of its impedancei ZC}
at a frequency of 10 Hz? At 100 Hz? At 1 kHz? Are these magnitudes “large” or “small”
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9. Assume you have a 1.2 k{2 resistor and a capacitor of 0.56 uF. At What angular frequency w
(rad/s) and corresponding frequency f (Hz) will these two components have the impedance

magnitude |Zc| = ]Z R|7 We’ll see later thlb defines the cutoﬂ" frequency of a filter.
1= [Tl > w, 1499 ved s = 23% Ha.

10. Let’s thijnk about some ir ortant limiting cases at extreme frequencies. What is the mag-
nitude |Z¢| at low frequencies (i.e., let w — 0)? What is the magnitude at high frequencies
(i.e., let w — 00)?

3 Resistors

Resistors you already know all about. They are easy mathematically: vgr(t) = ir(t)R. Therefore,
what is its impedance Zr? You should be able to just write the answer down.

4 KVL, KCL, and Generalized Ohm’s Law, Series and Parallel
Equivalents

KVL and KCL are still true as ever. Energy must be conserved. Charge must be conserved. But
now Ohm’s Law has become a more general form of:

V=1Z.

Our solution strategies we employed for all dc circuits (e.g. voltage dividers with resistors only)
will still be all the same, just now we are working with complex numbers to handle the frequency
dependent ac circuits with impedance Z.
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Note that series equivalent impedance work similarly as before:

7 :ZZn:Zl—f-Zz—i----:ZZn

Ditto for parallel equivalent impedance

5 High Pass Filter

At long last we finally get to see how to put all of this impedance and math stuff together to make
a useful circuit. Figure 1 shows two classics. We’ll start with the high pass filter
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Figure 1: 1-stage (or 1-pole) RC filters. Left: high pass filter (HPF). Right: low pass filter filter

(LPF)

1. Let’s solve the high pass filter (HPF) first. Our approach will parallel what we did for voltage
dividers with 2 resistors. After all, filters are just voltage dividers too! The just happen to

be a frequency dependent voltage divider, in this case.

2. Where are we measuring the output (across which element)? Write a generalized Ohm’s Law
in the form of Vot = Iz 2. (Where x is the subbcrlpt of the element we care about here).

Don’t plug in just yet for Z,. \/@ Wh ~ T %

3. Write KVL in the time domain: To help get you started, the gains are on the LHS. Write the

drops on the RHS.
w fenm vin(t) =

cmn

can write KVL in phasor notatlon as:
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4.) Assume sinusoidal response, where we have vy (t) = ain cos(wt + ¢i,). Show for the HPF we
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5. How does the res1stor current and capacitor current compare? Write KCL using phasor@

notation.

L q@& (‘C :4C,1 = I,
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6. Using KCL,and Ohm'’s law, solve for the current I in terms of Vj, and the impedances of Zg
and Zc.
7. Lastly, put all of the pieces of the puzzle together: solve for the transfer function in terms
of the impedances: ) ~ 2 o
H(w) = o = ————~% E - N L v
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Hint: this should look like a voltage divider relation, but with Z’s instead of R’s. |
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8. Plug in for the impedances to show that for the high pass filter we have: f,(;-/j«‘*“’f ( Ll
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6 Low Pass Filter s, 233
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Note the hpf subscript denotes this is the transfer function specific to a high pass filter.
Other filters (and systems) will have different forms on the RHS. That said, the concept of
transfer function = output/input is a general concept (throughout many branches of physics
and engineering)

Magnitude relation: Show that the magnitude response is given by:

wRC

V1+ (wRC)?

Make a decent (rough?) sketch of ‘ﬁ;tpf(w)’ VS, w.
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Cutoff frequency. At one special value of the frequency termed the cutoff frequency, w,, the
magnitude relation above is ‘f[ hof (wo)’ = 1/+/2. Compute the cutoff frequency in terms of R
and C. Hint: Go back to step 8 and draw complex numbers representing the numerator and
denominator.

Phase angle: Write a math expression of the for the phase angle of H, hpf(w), which we call
¢(w). This tells us how the phase of the output signal relative to the input signal, 77 ot ‘ ( W}ZC)
-z

Last but not least, let’s say we have a LPF with R = 1.2kQ2 and C = 0.56 uF. Compute
the cutoff frequency for this HPF. Then imagine we have the following two waves input to
the system. The low frequency reprsents the base line, the higher frequency the cow bell
(always need more of that). Compute the corresponding output magnitude and phase for
each. Which passes through? Which is attenuated?
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Now let’s solve for the LPF. The approach will parallel what we just did for the HPF in section 5.
Trace back through the steps to solve for the LPF. Spoiler alert, you should arrive at at transfer
function for the low pass filter of:

3 1
Hipf(w) = 1+jwRC






